

UNU-WIDER World Institute for Development Economics Research

Working Paper No. 2011/12

A New Way of Monitoring the Quality of Urban Life

Eduardo Lora¹ and Andrew Powell²

March 2011

Abstract

A growing number of cities around the world have established systems of monitoring the quality of urban life. Many of those systems combine objective and subjective information and attempt to cover a wide variety of topics. This paper introduces a simple method that takes advantage of both types of information and provides criteria to identify and rank the issues of potential importance for urban dwellers. The method combines the so-called 'hedonic price' and 'life satisfaction' approaches to value public goods. Pilot case results for six Latin American cities are summarized and policy applications are discussed.

Keywords: urban economics, quality of life, Latin America, public goods, hedonic price method, life satisfaction method JEL classification: R00, R21, R23

Copyright © UNU-WIDER 2011

¹Research Department, Inter-American Development Bank, email: eduardol@iadb.org. ²Caribbean Country Department, Inter-American Development Bank, email: andrewp@iadb.org.

This study has been prepared within the UNU-WIDER project on Development in an Urban World, directed by Jo Beall, Basudeb Guha-Khasnobis, and Ravi Kanbur.

UNU-WIDER gratefully acknowledges the financial contributions to the research programme by the governments of Denmark (Royal Ministry of Foreign Affairs), Finland (Ministry for Foreign Affairs), Sweden (Swedish International Development Cooperation Agency—Sida) and the United Kingdom (Department for International Development).

ISSN 1798-7237

ISBN 978-92-9230-375-4

Acknowledgements

The authors gratefully acknowledge the useful comments made by Vicente Fretes, Rita Funaro, Carlos Alberto Medina, and the organizers and participants of the UNU-WIDER Project Workshop 'Beyond the Tipping Point: Latin American Development in an Urban World', held in Buenos Aires, Argentina, 22-24 May 2009.

Acronyms

- HDI human development index
- LS life satisfaction
- OLS ordinary least squares
- QoL quality of life index
- SDI social development index

1 Introduction

Vienna has surpassed Zurich as the world city with the best quality of life, according to the Quality of Living Survey (Mercer 2009), one of many city rankings produced worldwide, which is widely consulted by multinational firms and organizations. According to this ranking, which covers 215 cities around the world, Zurich, Geneva and several other European cities also have excellent conditions for attracting international executives. Those conditions span more than ten categories, from a stable political and social environment, to availability of housing, consumer goods, recreation possibilities and a long list of public services that, according to Mercer, are important for the quality of life of international employees.

The declared intention of the Mercer ranking is to 'help governments and major companies place employees on international assignments'. Other systems of urban monitoring have similar objectives, such as evaluating cities' economic competitiveness or measuring their attractiveness to global business. For example, according to the 'global cities index' produced by *Foreign Policy* magazine in conjunction with A.T. Kearney and the Chicago Council on Global Affairs, the most global city in the world is New York, followed closely by London, Paris and Tokyo (*Foreign Policy* 2008). These cities excel in business activity, human capital, information exchange, cultural experience, and political engagement, which make them the most interconnected and allow them to set global agendas and to serve as hubs of global integration, according to the institutions that produce the index.

For residents of cities, however, or for the mayors and city councils that need to promote their citizens' wellbeing, these monitoring systems are useful but clearly incomplete. What purpose is served by improvement in international rankings if a city cannot meet its residents' most basic needs? The mayor of Port au Prince, Haiti, ranked 206 in the Mercer survey—the worst among the cities of the Americas—would be ill-advised to make decisions on public expenditures according to the tastes and needs of international functionaries stationed there, even when their influence and economic weight may be substantial. The interests and needs of the inhabitants of Port au Prince may in certain aspects coincide with those of the foreign population, but the immediate responsibility of the local government is to its citizenry, at least for the basic reason that foreigners do not vote.

In recent decades many cities, regions, and countries have established systems of monitoring the quality of urban life that take into account the interests and needs of cities' residents. The system with the widest coverage is found in Europe: the Urban Audit system of Eurostats, which monitors the quality of life in 357 cities with more than 300 indicators. This system has the explicit (and ambitious) intention to shed light on 'most aspects of quality of life, e.g., demography, housing, health, crime, labour market, income disparity, local administration, educational qualifications, environment, climate, travel patterns, information society and cultural infrastructure' (Feldman 2008).

Efforts in other world regions have less geographic coverage but are equally ambitious. The Quality of Life Report of New Zealand's Cities, which covers a dozen cities, encompasses 186 individual measures across eleven domain areas (Quality of Life Project 2007). In the developing world, initiatives in several cities of Colombia and Brazil stand out. Though less structured than their counterparts in Europe and New

Zealand, some of those monitoring systems have greater flexibility in exploring issues of immediate interest to citizens. The *Bogotá Cómo Vamos* system, for instance, is a veritable barometer of public opinion on the principal aspects of the city's conditions (Bogotá Cómo Vamos 2009).

All of these systems share two interesting but problematic traits. In contrast to the indexes for executives or international businesses, which are based exclusively on objective data, systems of monitoring the quality of life of the population at large combine objective information with opinions, though in varying proportions. While the Quality of Life Report of New Zealand's Cities attempts to strike a balance between objective and subjective indicators, Bogotá Cómo Vamos has gradually moved from its origin as an opinion survey in the late 1990s to a mix of subjective and objective indicators. A remarkable feature of both, however, is the lack of interconnection between the objective and subjective indicators. In the New Zealand system, for instance, the most comprehensive measures of subjective wellbeing are reported as part of the health indicators, with no attempt to understand their relationship with the objective indicators in that domain or others. The same concerns apply to other systems that mix objective and subjective indicators (Santons and Martins 2007). It is hard to argue that the urban quality of life can be satisfactorily monitored with the exclusive use of either objective or subjective indicators. Many important aspects of people's lives do not lend themselves to objective measure, such as the beauty (or lack thereof) of the urban environment, feelings of insecurity or the quality of the relations among neighbours. But subjective measures may be misleading, due to lack of public information, cultural biases, habituation or aspiration factors. Partially for these reasons, international monitoring systems (including Eurostats' Urban Audit) avoid subjective variables as much as possible, since they limit international comparability. This limitation, though, amounts to throwing out the baby with the bathwater. An alternative solution is to understand the relationship between objective and subjective indicators and exploit it in a complementary manner so as to enrich the interpretation of both.

A second problematic feature is the inclusion of a large number of topics. Since the very essence of urban life is the meeting of diverse individuals who undertake a variety of activities, and possibly have greatly differing interests and tastes, it may seem necessary for a monitoring system to cover many dimensions of a city's services and amenities and of the way in which residents utilize and value them. While the European Urban Audit's more than 300 indicators address the interests of many different users, that very breadth may hinder rather than facilitate the policy-making process because it does not provide any ranking of needs or priorities. Moreover, the development of a universal set of indicators that would make national or even worldwide comparisons among cities is a futile undertaking: huge differences exist in geographical, economic and socio-cultural contexts, and many aspects of quality of life are qualitative in nature. One possible solution is to use participatory approaches to elicit residents' degree of concern with different domains or their relative importance (Fahy 2009). An alternative, which is explored in this paper, is to employ objective and subjective information jointly, using statistical methods to deduce which dimensions and aspects of urban conditions are important, and to what degree, according to two complementary criteria.

The methodology proposed in this paper attempts to resolve the problems resulting from the use of a combination of objective and subjective information and to provide a way to identify and rank the issues of potential importance for urban dwellers. To combine objective and subjective information in a coherent manner and focus on the most relevant dimensions of the quality of life in a city or neighbourhood, this new method makes use of two basic conceptual criteria: the market price of housing and individuals' life satisfaction.

Housing market prices (or rentals) reflect the market's recognition of the characteristics or traits of both the housing itself and the neighbourhood where it is located. Housing prices offer a good summary gauge of the quality of urban life enjoyed by residents, assuming prices reflect all of the characteristics of cities that impact on people's wellbeing. This so-called 'hedonic approach' has a long tradition in the urban economic literature as a method of placing monetary values on the welfare impact of city amenities and public goods.¹ Families' location decisions implicitly reflect preferences regarding a set of characteristics pertaining to the house purchased or rented and the neighbourhood where the house is located, as well as the amenities offered in that location. In turn, these preferences will affect property prices in the market for land. A better quality house in a location that offers a wider set of amenities and fewer bads will command a higher price. Given sufficient variation in the house and location combinations present in the market, and assuming that the market functions smoothly, house prices will fully reflect the value of the full set of relevant housing and neighbourhood features and amenities. As examples of this approach, Roback (1982) and Blomquist, Berger, and Hoehn (1988) use hedonic price methods to estimate implicit values of local amenities; these prices can then be used to construct priceweighted quality of life (QoL) indexes.

An alternative and complementary method is to ask people how satisfied (or happy) they are with their life, their city or their neighbourhood.² A more recent literature has emphasized this utilization of subjective satisfaction or happiness indicators for evaluating wellbeing. Examples of this approach include Frey, Luechinger, and Stutzer (2004), Winkelman and Winkelman (1998), Di Tella and MacCulloch (1998), and Gardner and Oswald (2001).³ A recent Inter-American Development Bank book (IDB 2008) that considers many aspects of this approach is devoted to the analysis of life satisfaction in general in Latin America and the Caribbean. As income is included as an explanatory variable in the standard life satisfaction regression, the marginal valuations of other significant variables included in the analysis may be computed. Under certain circumstances this allows for the calculation of an implicit price for various QoL attributes, which again may yield a scheme to weight variables to generate an aggregate QoL index.

As two methodologies can be used to derive a QoL index, it is natural to ask what the relation between them is. Below it is argued that they are complementary. Indeed, under

¹ Pioneering work using hedonic methods to evaluate, for example, the impact of air pollution can be found in Ridker (1967) and Ridker and Henning (1967). Chay and Greenstone (2005) provide a more updated treatment of the same issue taking into account identification problems. Another area were hedonic methods have been widely used is to estimate the value of school quality. Early work for the United States is presented in Kain and Quigley (1975) and Li and Brown (1980). See Black (1999) Clapp and Ross (2002) and Bayer, McMillan, and Ferreira (2003) for more recent estimations.

² This question can also be applied to a specific dimension of life satisfaction such as how satisfied an individual is with their house.

³ Application to other economic issues like the costs of unemployment, the inflation-unemployment tradeoff, macro volatility and inequality see, respectively, Clark and Oswald (1994), Di Tella et al. (2001), Wolfers (2002), and Alesina et al. (2001).

some circumstances the most appropriate valuation may be the sum of the prices from each (van Praag and Baarsma 2005). However, comparing the two approaches may also yield interesting information regarding the functioning of housing and land markets in Latin America.

There is small but growing literature on estimating other types of QoL indexes for Latin American cities. For example, Amorin and Blanco (2003) employ census data for Rio de Janeiro to construct a human development index (HDI) for 126 neighbourhoods.⁴ Also for Rio de Janeiro, (Cavallieri and Lopes 2008) present the estimation of a social development index (SDI), an equally-weighted average of 11 socioeconomic variables normalized between 0 and 1, covering 8,045 sub-city areas defined by census radiuses.⁵ For the case of Colombia, using the data provided by the National Survey on Quality of Life, Acosta, Guerra and Rivera (2005) construct a city-level indicator based on the methodology proposed by Cortés, Gamboa and González (1999) that includes sanitary and water services, garbage collection, schooling, overcrowding and certain housing construction characteristics (the quality of floors and of walls). A potential drawback of these analyses, however, is that both the selection of the QoL indicators and the weights employed to construct an index tend to be arbitrary.⁶ In the analyses in this paper, on the other and, the hedonic and the life satisfaction methodologies both allow the data to determine which indicators should be included and what the weights should be in any QoL index.

The proposed two-pronged methodology has been applied in pilot studies conducted in several Latin American cities: Buenos Aires in Argentina, Bogotá and Medellín in Colombia, San José in Costa Rica, Lima in Peru and Montevideo in Uruguay.⁷ Although these cities cannot be considered a representative sample of all Latin American urban population centres, they are certainly diverse in terms of their history and socioeconomic characteristics. A key aspect that will differentiate this analysis, in relation to recent academic and policy work is the level of disaggregation. Here, the objective is to consider a within-city analysis. Thus many of the QoL indicators that are analysed are computed at the neighbourhood level. In some cases these sub-city areas represent districts or localities within large urban agglomerations; in other cases they refer to census tracts. This level of disaggregation allows to gauge the extent to which QoL indicators vary across the city space and so to consider whether differences in this indicator across households display some spatial pattern.

⁴ The human development index (HDI) is a welfare measures that combines three indicators: (i) longevity as measured by life expectancy at birth; (ii) educational attainment, measured as a weighted average of (a) adult literacy rate with a two-third weight, and (a) combined primary and secondary gross enrolment rates with a one-third weight; and (iii) standard of living as measured by income per capita.

⁵ The eleven indicators are: access to a water network within the house; access to sewage services; proper waste disposal collection; average size of household; number of bathrooms per house; percentage of illiteracy among household members older than 15 years; percentage of heads of household with less than four years of school, percentage of heads of household with 15 or more years of schooling; average income of heads of household (in terms if minimum wages); percentage of heads of household with income up to two minimum wages; percentage of heads of household with income of 10 or more minimum wages.

⁶ An exception is Acosta et al (2005). While the authors select the indicators arbitrarily, they determine the weights across nine regions of Colombia using a principal component analysis.

⁷ The project also included La Paz and Santa Cruz in Bolivia, but due to substantial methodological differences the results are not considered here.

The rest of this paper is organized as follows. In the second section the hedonic price approach is discussed and the results of its application to the selected cities are summarized. In the third section, the results employing the life satisfaction approach are summarized. The fourth section discusses the relation between the two approaches. The paper concludes with a brief discussion of the potential uses of the two-pronged methodology for policy analyses.

2 The hedonic price approach

A traditional method of estimating monetary values for local public goods and neighbourhood amenities is hedonic pricing. This method considers valuations based on actual behaviours and extracts preference from market prices. Valuations are inferred considering house prices or equivalent rents of properties with different characteristics. So long as enough variation in the relevant attributes is present in the sample of houses, values for each can be inferred from the information revealed in transaction prices.

The valuations can be derived from microeconomic fundamentals considering the households' and firms' location decisions as a function of the characteristics of neighbourhoods and houses. Intuitively, implicit prices for various QoL attributes are obtained from a 'spatial equilibrium' where a worker-resident receives an equilibrium wage and pays an equilibrium price for housing services. At this equilibrium, the worker-resident is just as happy living in that location as moving to a different one. For the equilibrium to be sustainable, differences in urban amenities between alternative locations must be compensated by differences in prices of the local traded goods: housing prices and wages.⁸

The urban economics literature has usually assumed that city amenities affecting the QoL are reflected not only in land or housing prices but also in wages. The key assumption is that city borders also place limits on labour markets in the sense that the choice of residence affects access to job opportunities. In contrast, the analysis presented in this paper focuses is on within-city variations in QoL. As it is reasonable to assume that job opportunities do not differ greatly among workers within neighbourhoods, valuations of amenities will be captured in house prices and not in wage differentials. Within-city location is not expected to limit labour opportunities if worker mobility is relatively high. To implement empirically this methodology complementary data on real estate prices are needed. Ideally, for each sub-city area j, information on housing prices and characteristics needs to be collected for a representative sample of housing units. Thus the hedonic regression to be estimated would have the following form from Gyourko, Linneman and Wachter (1999),

$$\operatorname{Ln} p_{ij} = \operatorname{constant} + \gamma_1 H_i + \gamma_2 Z_j + v_{ij}, v_{ij} = \delta_j + \eta_i$$
(1)

where p_{ij} is the rental price of house *i* located in neighbourhood *j*, H_i is a vector of individual house features (number of rooms, quality of construction, square meters, etc.), Z_j is a vector of neighbourhood *j* amenities (crime rate, green space, etc.), and v_{ij} is

⁸ For a description of the microeconomic fundamentals behind hedonic pricing of quality of life indicators, see Gyourko, Linneman and Wachter (1999).

the composite error term which is a combination of a neighbourhood-specific error component, δ_j , and a house-specific error component, η_i . The city-specific error component is common to all houses in the neighbourhood and represents systematic uncontrolled differences in amenity characteristics across sub-city areas, but it may also capture systematic uncontrolled differences in *house quality* across neighbourhoods. Either of these two factors would imply that the composite error term across houses within the same sub-city area will be correlated, violating the ordinary least squares (OLS) independence assumption.⁹

The above brief discussion of the hedonic methodology already suggests the rather restrictive assumptions made by this theory. The presumption that the real estate market is in equilibrium implies that households have a great deal of information on buying-selling opportunities in the real estate market, that prices of houses and land adjust rapidly, that transaction and moving costs are low, and that there are no other market restrictions (e.g., prices controls). Only if these assumptions are met would we expect the impact of public goods or bads to be fully reflected in housing rents and prices.

Beyond the theoretical concerns regarding whether the application of hedonic pricing is justified or not, from the empirical point of view there is the abovementioned problem of unobserved house and neighbourhood characteristics and the consequent bias produced by omitted variables. In the literature this problem is manifested in results that vary across different regression specifications or, occasionally, in variables that even appear to have the wrong sign. The practical relevance of this problem is discussed in the context of the estimation results presented below.

Table 1 shows a summary overview of the results of the hedonic regressions. There is considerable variation across the considered urban areas in terms of features that affect house prices. For example, in the San José metropolitan area (Costa Rica), the slope of the land in a neighbourhood and vulnerability to volcanic eruptions negatively affect property values. In Montevideo, proximity to the coastal promenade (La Rambla) is an important feature of a neighbourhood, which contributes to the values of the houses. In some cities, proximity to a main avenue or thoroughfare may be considered an asset, whereas in another context it may indicate congestion or pollution. Thus, while in Buenos Aires or in Medellín closeness to a subway station contributes to higher house prices, in Bogotá distance to the 'Transmilenio' transport system does not affect house prices. In those cities where basic domiciliary services coverage is still deficient in some areas, its influence in house prices can be gauged. The results indicate that access to running water, access to sewage and access to piped gas are all associated with higher house prices.

Other neighbourhood variables that proved to be important in several of the cities considered include proximity to schools, proximity to a park or a green space and security. Interestingly, in some cities it is also noted that variables that relate to segregation by socioeconomic characteristics also have impacts on property prices. In

⁹ In particular it will imply a downwards bias to OLS-based standard errors (Moulton 1986). Thus the potential problem of the presence of group effects needs to be addressed by correcting the standard error by clustering or running a random effect E estimation (assuming city fixed effects are not correlated with any of the Z variables). Of course this problem will be minimized the better the data on individual housing characteristics and also the more data we have for neighbourhood-level QoL attributes.

the case of Bogotá and Medellín, it is observed that the proportion of people belonging to the highest socioeconomic stratum and the average level of education by census tract have a significant positive impact on property values (even after controlling for housing and other neighbourhood characteristics). In fact, these two variables explain around 20 per cent of the variance of prices in Bogotá and 30 per cent in Medellín.

These quantitative estimates should be considered with caution, as identification problems may produce biases in the results. Segregation is an endogenous response of location decisions to market prices so that causality could go from prices to the chosen indicator of segregation. At the same time, these neighbourhood-level variables may be capturing other unobservable characteristics of houses and neighbourhoods. Still, at least qualitatively these results suggest that in fact spatial segregation could result in a negative externality for poor/low educated families living in those city areas. The issue is discussed below when addressing policy implications.

House prices also depend strongly on the characteristics of the particular home in question. Location is definitely not everything when it comes to the cost of housing or equivalent rents. Here there is more homogeneity regarding the variables found to be significant. In particular, the number of rooms (total rooms or bedrooms), the number of bathrooms and the condition of walls, roof and floors are typically found to be significant. In Buenos Aires, the age of the house is found to be important (with a negative coefficient), and in some cities the presence of a garage and an exclusive kitchen appear to be important.

Policy makers frequently need to know the relative importance of the different variables, as they must make decisions on where to invest scarce resources. Should investments be made in the quality of housing construction or in providing neighbourhood amenities? In the case of Bogotá, around 30 per cent of the variance in housing prices is explained by identified neighbourhood amenities, while 51 per cent of price variation is explained by housing attributes. For Medellín the numbers are 37 per cent and 25 per cent, respectively. In the Metropolitan Area of San José, neighbourhood amenities explain 39 per cent of the variation in rents. Neighbourhood features, while not everything, are definitely significant. This last conclusion is very important from the point of view of urban planners and local authorities, as it suggests that quality of life, as reflected in property values, can be improved by supplying better local public goods and neighbourhood amenities.

The hedonic method provides a direct method to evaluate this type of intervention in monetary terms. Using the coefficients from the regressions an implicit price can be estimated (expressed in monthly terms) for different housing and neighbourhood attributes. Table 2 presents an exercise considering San José, Costa Rica. This price indicates how much the monthly rental of an average house would change with an

Argentina	Colombia	Colombia	Costa Rica	Uruguay
(Buenos Aires)	(Bogotá)	(Medellín)	(San José)	(Montevideo)
		Housing characteristics		
	No. of rooms	No. of rooms	No. of rooms	No. of rooms
Garage	Garden	No. of bathrooms	No. of bathrooms	No. of bathrooms
Quality of construction	Garage	Fixed phone line	Condition of walls	Condition of walls
	Condition of floor	Internet or satellite TV	Condition of floor	Condition of floor
	Size of house	Garage	Condition roof	Condition of roof
No. of bathrooms	Size of plot	Condition of floors	Exclusive bathroom	Exclusive kitchen
		Condition of walls		
		Neighbourhood characteristics		
Drug dealing	Homicide rate	Environmental risks	Safety	Access to running water
Public transportation stops	No bus/train terminal	Distance to subway	Slope	Access to sewerage
	Distance to restaurant	Distance to bus terminal	Eruption vulnerability	Access to gas
Distance to subway	Running water	Distance to main/connector	Distance to fire departments	Condition of street
	Average education	Running water	Neighbourhood road	Condition of sidewalk
Distance to green space	Education inequality	Pipe gas	Length of primary road	Street lights
	Schools per capita	Average education	Length of secondary road	Access to La Rambla (ocean
	Distance to universities	Distance to university	Distance to parks	P
	Lower unemployment	Distance to places of cultural value		

 Table 1

 Significant house and neighbourhood characteristics revealed in house prices, selected cities

Source: Authors' compilation based on the IDB (2007).

Amenities/disamenities	Estimated coefficient	Implicit price (2000 US\$)
Housing characteristics		
No. of bedrooms	0.55***	30.84
No. of rooms (not-bedrooms)	0.33***	18.80
Floor in good condition	0.24***	13.63
Walls in good condition	0.44***	24.82
Walls of cinder blocks	0.82***	45.72
Roof in good condition	0.32***	18.23
Ceiling in good condition	0.43***	24.46
Water source: communal organization	-0.36***	-20.24
Water source: rain	-0.82**	-46.07
Water source: well	0.13	7.44
Water source: river	-0.89***	-49.63
Sewer (septic tank)	-0.10***	-6.03
Sewer (latrine)	-0.21*	-11.72
Sewer (other)	-0.33***	-18.60
No sewer	0.09	5.05
Exclusive bathroom for the household	0.48***	27.07
Electricity not supplied by Insituto Costarricense de Electricidad	-0.24***	-13.66
No electricity supplied	-0.70**	-39.15
Total contribution of housing characteristics (%)	60.84	
Neighbourhood characteristics		
Safety index	0.46***	25.82
Degree of slope	-0.01***	-0.57
Precipitation (mm ³)	-0.12**	-6.99
Risk of eruption	-0.13**	-7.52
Distance to national parks (km)	-1.25***	-70.09
Distance to clinics (km)	0.01	0.57
Distance to secondary schools (km)	0.02	1.18
Distance to primary schools (km)	0.00	0.19
Distance to rivers (km)	0.06***	3.42
Distance to fire departments (km)	0.05**	3.14
Closeness to Sabana park	-0.54***	-30.58
Distance to Peace Park	1.35***	75.56
Length of primary roads (km)	-0.46***	-25.89
Length of secondary roads (km)	0.23***	13.31
Length of urban-neighbourhood roads (km)	0.57***	31.77
Neighbourhood classified as poor	-0.35***	-19.91
Total contribution of neighbourhood characteristics (%)	39.15	

 Table 2

 Hedonic estimation of implicit prices for housing and neighbourhood characteristics, metropolitan area of San José de Costa Rica

Note: Km=kilometres; mm³=cubic millimetres. The price of amenities is measured at mean prices in 2000 dollars (308 colones=1 dollar).

*Coefficient is statistically significant at the 10% level; ** at the 5% level; *** at the 1% level; no asterisk means the coefficient is not different from zero with statistical significance.

Source: Hall, Madrigal and Robalino (2008).

additional unit of the amenity. These prices indicate that, for example, each degree of slope of land implies a lower housing cost of about 60 cents (0.6 US\$) per month, whereas an extra unit of safety (measured as reported crimes per week in the neighbourhood) would imply a higher cost of housing of over US\$20 per month.¹⁰

Using these implicit prices, an index of the overall value of neighbourhood characteristics can be generated and, combining this with the average value of housing characteristics, an overall neighbourhood quality of life (QoL) index expressed in monetary terms can be calculated. Employing this technique, it is possible to obtain the average QoL index measured in terms of monthly rental value of houses by district (including both housing and neighbourhood characteristics across 51 districts), which in San José ranges from US\$143 to US\$370 per month. Table 3 lists the top ten and bottom ten neighbourhoods in San José by this measure. The contribution to this rental value of the neighbourhood amenities and other characteristics ranges from -US\$67 to US\$27; the contribution can take negative values as some neighbourhood

	Neighbourhood plus housing characteristics		Neighbourhood characteristics		Housing characteristics	
Neighbourhoods	Ranking	Value (US\$)	Ranking	Value (US\$)	Ranking	Value (US\$)
Тор 10						
Sánchez	1	370	1	27	1	343
San Rafael	2	285	2	9	8	275
Mata Redonda	3	275	10	-23	2	299
Carmen	4	264	11	-24	3	287
San Vicente	5	258	8	-20	6	277
Anselmo Llorente	6	254	13	-28	4	281
San Isidro	7	245	3	-5	23	250
San Pedro	8	238	20	-32	10	271
San Juán	9	237	16	-30	11	267
Sabanilla	10	237	35	-39	7	276
Bottom 10						
Alajuelita	42	172	48	-59	34	230
Hospital	43	169	40	-42	42	211
San Jocesito	44	166	46	-54	38	220
San Felipe	45	165	36	-40	46	205
Cinco Esquinas	46	164	28	-37	48	200
Patarrá	47	154	15	-29	51	183
San Juán de Dios	48	148	50	-62	45	210
Tirrases	49	144	51	-67	43	211
Concepción	50	143	49	-61	47	204
Aserri	51	143	47	-57	49	199

 Table 3

 Ranking of districts by housing and neighbourhood characteristics, using hedonic prices to construct a QoL index, Metropolitan San José, Costa Rica

Note: Rounding errors may mean that sums are not exact.

Source: Cruces, Ham and Tetaz (2008).

¹⁰ Housing costs refers to 'equivalent rents', which is either the rent itself or a calculation of the opportunity cost of inhabiting the self-owned house (as estimated, albeit somehow subjectively by the owner). Any differences between renters and owners in relation to their preferences are ignored in this analysis.

characteristics, such as the probability of a volcanic eruption, are 'bads' rather than goods. The contribution of housing characteristics ranges from US\$183 to US\$343, reflecting the differing quality of housing construction across districts in San José.

As expected, wealthier districts such as Sánchez, San Rafael and San Isidro have relatively high rental values attributable to neighbourhood variables while poorer areas such as Patarrá, San Juán de Dios and Tirrases have lower values. Although this is not surprising, it illustrates how neighbourhood characteristics may exacerbate income differentials in terms of the distribution of quality of life. These valuations also provide a guide to where scarce resources might be concentrated to best improve that distribution. However, there are also some unexpected results. For example Mata Redonda ranks very high in housing characteristics (3rd) but rather poorly in neighbourhood amenities (10th), while Patarrá ranks poorly in housing characteristics (47th) but relatively high in neighbourhood amenities (15th). This illustrates that there is indeed considerable space for action. Public policy has contributed to these results and may be used further to enhance the welfare of those living in districts where neighbourhood valuations are currently at the lower end.

-	-			-	
Neighbourhood	Avg index implicit price difference (value, 2006 US\$)	Avg amenities index (-1 to 1, scale)	Ranking by amenities index (of 47 neighbour- hoods)	Avg price per sq m (US\$)	Ranking by price per sq m (of 47 neighbourhoods)
Тор 10					
Chacarita	218.7	0.186	1	1,021	14
Colegiales	214.0	0.166	2	1,174	7
Puerto Madero	209.2	0.064	18	2,810	1
San Nicolás	204.2	0.159	3	1,159	8
Palermo	202.9	0.129	7	1,507	3
Belgrano	184.7	0.136	5	1,269	5
Villa Ortuzar	178.0	0.148	4	1,118	9
Recoleta	158.2	0.105	10	1,453	4
Retiro	154.3	0.091	14	1,721	2
Villa Crespo	138.8	0.128	8	1,016	16
Bottom 10					
Monte Castro	-42.8	-0.051	36	862	30
Villa Devoto	-44.5	-0.056	38	960	22
Villa Soldati	-44.9	-0.070	40	680	45
Villa Lugano	-46.4	-0.081	43	605	47
Mataderos	-60.4	-0.082	44	754	42
Villa Luro	-63.1	-0.079	42	836	36
Liniers	-63.6	-0.076	41	852	34
Versalles	-89.0	-0.108	45	873	28
Villa Riachuelo	-90.0	-0.124	46	760	41
Villa Real	-126.6	-0.164	47	850	35

Table 4
Using hedonic prices to construct a QoL index, by neighbourhood, City of Buenos Aires

Source: Cruces, Ham and Tetaz (2008).

A similar exercise of calculating monetary values for neighbourhood amenities using the hedonic method is presented here for Buenos Aires. Table 4 ranks the top ten and the bottom ten neighbourhoods. Neighbourhood characteristics include the distance to different urban infrastructures like avenues, schools, parks, freeways, train stations and subways. The first column of the table represents the estimated value (in 2006 US dollars) of the neighbourhood characteristics for the average house in the indicated city area. The second column indicates the percentage difference in price given by the considered amenities (0.05 means that property values prices rise 5 per cent). As seen for some neighbourhoods, even the rather small number of amenities considered implies a significant increase in property values (18 per cent for Chacarita, 17 per cent for Colegiales). At the other extreme, for some other areas the lack of these amenities implies a significant reduction in property prices (e.g., -16 per cent for Vila Real and -12.5 per cent for Villa Riachuelo). Overall we see that wealthier neighbourhoods (as judged by average price of property per square meter) such as Recoleta and Palermo are included in the top ten, while poorer ones, such as Villa Lugano and Mataderos, in the south of the city, are in the bottom ten. Interestingly, there are some relatively expensive neighbourhoods at the bottom of the table (Villa Devoto), and neighbourhoods in the middle of the income distribution (such as Chacarita and Villa Crespo) are among the top ten. With respect to the 2006 average price of real estate per square meter in the city of about US\$1,041, the implicit price differences given by this index ranges from US\$219 to -US\$126, with an average of US\$72.5, or just under 7 per cent of the average property value.

The correlation between the price per square meter and the index is positive, but it is far from one. This reflects a significant but imperfect relationship between the index and property prices (the price/index correlation is 0.43, and the price/rank correlation is 0.71). This imperfect correlation again suggests that there are other factors that determine real estate prices other than basic housing features and neighbourhood characteristics; fashion would be one possible explanation. In the case of Buenos Aires, the ordering developed can also be used as a guide for public investment to improve the distribution of quality of life.

3 The life satisfaction approach

Life satisfaction (LS) is a relatively new approach to placing a value on public goods (Frey, Luechinger and Stutzer 2004; van Praag and Baarsma 2005). This method corresponds more closely to a stated preference approach. As reported, subjective wellbeing can serve as an empirically adequate and valid approximation for individual utility, it is an obvious and straightforward strategy for directly evaluating public goods in utility terms. By measuring the marginal utility of a public good as well as the marginal utility of income, the tradeoff between income and public goods (the implicit price) can be calculated.¹¹

¹¹ As indicated in Frey, Luechinger and Stutzer (2004), measures of self- reported subject wellbeing passed a series of validation exercises in the sense that they reflect objective circumstances affecting individuals' wellbeing. Another critical assumption made by this approach, which makes it possible identify the impact on welfare of public goods, is that utility is cardinal and interpersonally

Life satisfaction has certain advantages with respect to hedonic methods. First as this method is not based on observed behaviour, the underlying assumptions are less restrictive and non-use values can be measured to some extent. Furthermore, individuals are not asked to value the public good directly, but to evaluate their general subjective satisfaction. Arguably, this is a less cognitively demanding task and also one that does not allow for strategic behaviour—two issues that have been critical problems affecting contingent valuation methods.

LS methods have been successfully applied to value different public goods and policies. For example, the approach has been successfully applied to value environmental externalities. For example, van Praag and Baarsma (2005) analyse the noise nuisance in the area of the Amsterdam Airport. For the case of housing and neighbourhood amenities, Cattaneo et al. (2007) provide evidence that certain basic housing characteristics generate significant improvement in health and self-reported levels of QoL satisfaction even though they are poorly correlated with family income.

In the basic empirical analysis of the LS approach, a micro-econometric happiness function is estimated in which individual's utility is approximated by self-reported subjective wellbeing. Explanatory variables are his/her income and a vector of socioeconomic variables. In addition, exposure to different neighbourhood and city amenities (or dis-amenities) could also be included. The typical regression has the following form,

$$LS_{ij} = a + b y_{ij} + c age_{ij} + d age_{ij}^{2} + e fs_{ij} + g H_{ij} + h Z_{j} + v_{ij}$$
(2)

where y, age and fs represent income, age and family size of individual i living in neighbourhood j. H and Z are two vectors of housing and neighbourhood characteristics, respectively. The error term $v_{ij}=n_i+z_j$ is a composite error term which is a combination of a neighbourhood-specific error component, zj and a house-specific error component, n_i . Equation (2) is the typical LS regression with the addition of housing and neighbourhood features. In this regard it is important to mention that empirical applications of this approach have consistently found that income has a positive effect on LS and that age has a negative but decreasing impact (b negative and d positive).

The estimation of Equation (2) is subject to potential omitted variables bias. In crosssection applications of these regressions, which will be summarized in a later section, estimation can be seriously biased if unobserved factors covariate with life satisfaction and the measured public good. A key issue is then to control for potentially co-linear variables, though the lack of the relevant indicators generally limits this procedure. Alternatively, instruments for the public good variables could be used.

Table 5 presents an overview of the results. A set of housing and neighbourhood characteristics the found to be important for each city, with reasonable homogeneity across different urban areas. The table indicates statistically significant coefficients in a

comparable. This assumption, though problematic on theoretical grounds, proved to be less problematic empirically. For example, Frey and Stutzer (2002) report very similar quantitative results in micro econometric estimations of happiness function using ordinal and cardinal measures of satisfaction.

regression of life satisfaction on a set of standard variables (income, age, sex, marital status, etc.) and then a set of house and neighbourhood characteristics.¹²

At least one indicator of the quality of house construction appears as significant in all cases.¹³ The particular proxy varies between the quality of floors and the quality of walls, but at least one appears in each case. In the case of the two Colombian cities (Bogotá and Medellín), the number of rooms also appears as significant, although this is not the case in the other cities.

With respect to neighbourhood characteristics, security appears as perhaps *the* most important and consistent issue in Latin American cities, which is consistent with the cross-country findings on city satisfaction reported by Lora et al. (2010: Chap. 1). For example, in the case of San José, the presence of gangs negatively affects life satisfaction. In the case of Bogotá, Lima and Montevideo safety is seen as an important neighbourhood attribute. Access to basic services such as electricity, water and sewage, garbage collection and telephone also appear as important neighbourhood characteristics. For Bogotá, inefficiencies in the provision of certain infrastructure services like energy, garbage collection and telephone services have a negative and significant impact on subjective wellbeing.

Note that some neighbourhood characteristics are objective, in the sense that they can be verified by an external observer, such as the presence of garbage in the streets, or the availability of payphones (in general the information on the objective variables was reported by interviewers in this project). But several subjective neighbourhood characteristics were also included that were based on residents' own opinions. Among the subjective variables, good neighbours are found to be particularly valuable in Argentina and in Peru, as is the perceived condition of streets in Peru.

Several neighbourhood characteristics that might be considered important *a priori* do not seem to influence individuals' satisfaction. Perhaps surprisingly, traffic (or congestion) was only significant in the case of Buenos Aires. This is also consistent with the cross-country results reported in Lora et al. (2010: Chap. 1), where traffic problems did not affect city satisfaction. However, one view is that this is a disamenity that people become used to and over time even become unaware of, and hence do not consider it as one of the most important when asked.

Apart from judging which housing and neighbourhood characteristics are particularly important, the life satisfaction approach can also be used to place a value on living in a neighbourhood or on a particular house or neighbourhood characteristic.¹⁴ As income

¹² Here, the distinction is somewhat artificial between what is a house characteristic and what is considered a neighbourhood characteristic, as the data are at the level of each household. In practice the distinction may be drawn, given the relative variation across individual houses in a sub-neighbourhood. For example in a (small) sub-neighbourhood most houses will have or will not have access to water, hence this is considered as a neighbourhood characteristic here.

¹³ The Argentina study adopted a slightly different methodology where housing satisfaction was included in the regression and so individual housing characteristics were not included. However, a second stage regression was performed to explain housing satisfaction and here too the quality of house construction was found to be a significant variable.

¹⁴ Lora et al. (2010: Chap. 3) provide a description of the theory and applications of these techniques in practice. See also Frey, Luechinger and Stutzer (2004) and Ferrer-i-Carbonell and van Praag (2004).

Argentina	Colombia	Colombia	Costa Rica	Peru	Uruguay
(Buenos Aires)	(Bogotá)	(Medellín)	(San José)	(Lima)	(Montevideo)
Housing characteristics					
Not included (because a 2-stage technique was used)	No. of rooms	No. of rooms	Quality of floors	Condition of walls	Quality of walls
	Quality of floors	Satellite TV services			
		Quality of floors			
leighbourhood characteristics					
Security during the day	Safety in neighbourhood	Presence of prisons	Safety (presence of gangs)	Safety (robbery)	Safety (vandalism in neighbourhood)
Sidewalk condition when raining	Robbery				
Noise during the day	Drug dealing			Condition of street	Running water
Cultural and sports activities	Recreation/sports centres	Distance to places of cultural value		Trust in neighbours	Street lights
Amount and quality of green areas	Quality of energy services				
	Quality of garbage collection	Distance to main or connector street			
Traffic	Quality of telephone services				
Evaluation of neighbours					
	Avg education in neighbourhood				
Other controls					
Income	Income	Income	Income	Income	Income
Age	Age	Age	Age	Age	Age
Marital status	Marital status	Marital status	Marital status	Marital status	Marital status
Household size	Family size	Family size	Family size	Family size	Family size
Education	Health variables				

Table 5 Overall life satisfaction regressions for the six case cities: Summary of results and significant factor

Source: Authors' compilation based on the IDB (2007).

	Monthly income compensation	
	(%)	(US\$)
Neighbourhood characteristics		
Neighbourhood dummies		
Avellaneda	0	0
Caballito	-1,47	-11,66
Palermo	-1,28	-10,15
Neighbourhood characteristics		
Annoying noise during the day	0,38	3,01
Good sidewalk conditions when raining	-0,38	-2,99
Good conditions of paved streets	-0,40	-3,13
Cultural and sports activities	-0,22	-1,75
Amount and quality of green areas	-0,32	-2,51
Low traffic in neighbourhood	-0,23	-1,86
Security during the day	-0,45	-3,59
Evaluation of neighbours	-0,64	-5,10
Payphones	-0,35	-2,78

 Table 6

 Values of neighbourhood characteristics in selected Buenos Aires neighbourhoods

Change from average to own neighbourhood (income variations)

	Neighbourhood	
	QoL Index	Average monthly income
Neighbourhood	(US\$)	(US\$)
Avellaneda	-319	763
Caballito	463	807
Palermo	455	866
San Cristóbal	-558	704

Source: Cruces, Ham and Tetaz (2008).

influences life satisfaction along with certain characteristics (say, the condition of streets), the tradeoff between greater income and better streets can be used to estimate the value of improving streets. At no point do interviewed people actually express how much they are willing to pay for these characteristics. The life satisfaction approach is then particularly useful, as it can be used to value amenities that do not yet exist or where there is no market price available.

In order to illustrate how the life satisfaction approach can be used to price or value neighbourhood amenities, Table 6 shows the values for those neighbourhood characteristics that turned out to be significant for three neighbourhoods in Buenos Aires.¹⁵ The table not only presents the valuation of individual neighbourhood

¹⁵ These valuations stem from a two-stage technique (developed by Van Praag et al. 2003) where in a first step overall life satisfaction is regressed on income and a set of domains (including satisfaction with the neighbourhood), and then in a second step neighbourhood satisfaction is regressed on a set of more objective neighbourhood characteristics. The coefficient on income in the first regression and the coefficients on neighbourhood satisfaction and the coefficients in the second step are then

characteristics and amenities but also how they are combined into a QoL index. Thus the approach can be used to place a value on a neighbourhood as such, as well as the specific characteristics of those places. For instance, good condition of paved streets has an estimated value of a monthly payment of US\$3. In the same way, living near green areas and parks commands a monthly income of around US\$2.5. The significant value for the neighbourhood dummies suggest that differences in value goes beyond the differences in the set of characteristics considered. In other words, this value is in addition to the measured differences in neighbourhood characteristics as reflected in the regression results. Overall the combinations of all these characteristics (those that are observable and those captured by the dummies) imply that people living in Caballito and Palermo enjoy a quality of life that is equivalent to a monthly payment of aroundUS\$450 per month compared to that of people living in a neighbourhood with the average supply of local public services and amenities.

The life satisfaction approach then provides one possible route for ascertaining which amenities are actually considered to be valuable and also to place values on those characteristics and for monitoring these valuations over time to see if they change depending on socioeconomic developments and as the characteristics of cities change.

4 The relation between both approaches

As discussed above, the hedonic and life satisfaction approaches can be viewed as complementary. To understand their relation, consider an extreme case where markets function perfectly and where there is ample variation in the housing stock so that there are houses with different characteristics and that display a wide variation of neighbourhood amenities and dis-amenities (bads). Under these circumstances house prices may reflect all the valuations of the relevant neighbourhood and housing characteristics, and hence suitably specified regressions with house prices as the dependent variable may reveal those valuations.

In the extreme case where markets function perfectly, those same characteristics may not be at all significant in the life satisfaction regressions. The reason is that income is already included as one explanatory variable, and as the various characteristics are priced correctly, individuals may already buy them through their market-based housing decisions. This then implies that there is no extra effect to be found by regressing life satisfaction on individual house or neighbourhood characteristics. In essence the importance of, say, a neighbourhood amenity is already priced and paid for through the value of the house. The interpretation is, then, not that these factors are unimportant, but rather that markets work well and are in equilibrium.

This implies that using the results of the hedonic regressions to calculate prices and using those as the weights to develop a QoL index is appropriate. In this case the life satisfaction approach would not be expected to reveal very much. As income is included in the regression and markets are in equilibrium, no additional welfare is obtained from

combined to find the tradeoff between income and, say, improved security during the day. This tradeoff implies how much someone would be willing to pay to obtain a little more security and hence can be interpreted as the price of additional security.

the relevant good (or reduction in welfare from a bad). These factors are therefore already reflected in prices and affect welfare through the income variable.

A more realistic case, however, is that housing markets are not perfect. Information problems and transaction costs may be significant, suggesting that disequilibria may persist in housing markets for a considerable period of time.¹⁶ In this case, it is possible that both the life satisfaction and the hedonic regression approach will find significant effects for a particular characteristic. Moreover some characteristics change quite quickly over time; for example, bus routes change, patterns of crime may shift and some neighbourhoods become 'gentrified'. Other characteristics, though, are much more permanent. A river or coastal area, for instance, is a fixture, the slope of the land cannot be changed easily and parks rarely move (although they may be improved). These more structural features (again assuming there is enough variation in the housing stock) may be priced in the cross-section of house prices at a given time, whereas characteristics that shift over time may not be priced appropriately in the snapshot of house prices typically available. This implies that hedonic regressions may reveal some valuations but not others depending on the nature of the characteristic in question. And where hedonic regressions do reveal values, they may only reveal those valuations imperfectly as the market may be slowly moving towards equilibrium.

Moreover, there may be insufficient variation in a particular characteristic across the housing stock for that characteristic to be priced. For example, if all houses have exactly the same type of roof, then the quality of roofing will not be reflected in house prices. Likewise, if the crime level is constant across neighbourhoods this dis-amenity will not be priced. In these cases, prices will not reflect the full marginal effect of these characteristics on welfare. In this case hedonic regressions may not find the characteristic significant, whereas these factors may well be picked up by the life satisfaction approach.

These issues are discussed further in van Praag and Baarsma (2005) where it is suggested that the hedonic and the life satisfaction approaches are complements. Indeed, it is shown that, if certain conditions are met, the correct valuation is actually the sum of the coefficients from the two approaches. However, this is only feasible if the same sample and the same variable are included in both analyses, and in general this is not the case. Moreover, it is also of interest to compare the two approaches and to understand what the combination of results implies for how housing markets operate in the region.

Any neighbourhood characteristic (ranging from the quality of sidewalks, safety condition, or proximity to public transportation routes) can be classified as one of four options, according to their effect or lack of effect on housing costs and to their effect or lack of effect on subjective wellbeing or life satisfaction *beyond what is paid for it*.

As mentioned, the simplest case is that of characteristics affecting housing costs, which do not have an additional effect on life satisfaction. A typical example is access to types of transportation. The housing units that are closest to a subway station or public transportation routes often are worth more than those that are located at a greater distance. That people pay more for the former units implies that proximity to

¹⁶ Because, for example, of imperfect information with respect to certain features like crime, which cannot be associated easily with a specific location due to its transitory nature.

transportation has an impact on people's quality of life. But it does not *additionally* influence life satisfaction, which suggests its value is its price.

If a city spends more on the delivery of goods and services that influence housing costs, it makes an implicit transfer of wealth to owners of certain homes and not to others. This has two important implications. One is the type of goods or services that can, or perhaps should, be financed through real estate taxes. The other is that, unless goods and services are delivered equally across the board, the poorest residents of beneficiary neighbourhoods will become displaced by those more fortunate people who are willing to pay higher prices for their housing. Thus, these types of goods can be a major cause of urban economic segregation, a problem that in itself is quite severe in many cities of Latin America.

For the reasons mentioned, not all goods and services that people care about are reflected in housing prices. Some contribute to life satisfaction without having any impact through the housing market. Typical examples are recreational centres and places of cultural interest. Those who have easy access to these places may enjoy a more relaxing lifestyle and lead more satisfactory lives, perhaps because sports and culture contribute to health, intellectual enrichment, and socialization. Since they do not contribute to inflating the prices of nearby housing it is not feasible or desirable to finance them with property taxes. But at the same time it should be noted that they do not exacerbate urban social segregation. On the contrary, the areas around these facilities may attract people of diverse socioeconomic backgrounds who appreciate health and culture, contributing to the diversity and vitality of the beneficiary zones. Since people appreciate investments of this type but do not pay for them, it is hardly surprising that they are an effective instrument for the politicians seeking to increase their popularity and garner votes.

Some neighbourhood characteristics are reflected partially in housing costs and partially in life satisfaction. Quite common is the case of safety, as already seen. The implication of improving safety or security conditions is that although some residents may be pushed out, the effect is quite limited, given that the benefit in subjective perceptions will be far greater than the costs for the increase in security.

Finally, it is important to bear in mind that there are goods and services which, even though they may be potentially important factors in the quality of life, are not reflected in the costs of housing or in life satisfaction, as reported by individual survey respondents. This can occur for purely statistical reasons (for example, because the data on housing costs and life satisfaction are not sufficiently precise to take account of their impact, or because the problem is common to every city or group of neighbourhoods under consideration, such that the effect tends to be the same on the vast majority of homes and persons, as for example with the issue of air quality).¹⁷ But this may also occur with problems, which people are largely unaware of or to which they are excessively accustomed. A potential example is poor citizen culture where there is a pervasive absence of respect for norms and standards (zones where parking is permitted, respect for pedestrians, facilities for persons with disabilities, cleanliness of public areas, etc.). Another example is that of moderate traffic problems. It is important to

¹⁷ Another possible statistical reason is that a neighbourhood characteristic, such as safety, is so closely correlated to a separate trait, such as the condition of public zones, that it is not statistically possible to disaggregate the two effects.

know which of these are characteristic of neighbourhoods or cities, because their solution will not be easily financed nor will it reflect recognition for local government efforts, unless a campaign is first carried out to raise awareness of the problem and its implications.

5 The monitoring system and public decisions

The monitoring system described here facilitates public decisionmaking in many ways. It allows public officials to know what city attributes individuals value the most and which problems are the most urgent to amend. Ultimately it provides a methodology for officials to place a monetary value on city characteristics. Combined with cost information, this facilitates planning and investment decisions. These characteristics may range from physical amenities to issues such as pollution or crime. The methodology can be used to develop a weighting system which can then be employed to calculate overall quality of life indices for different neighbourhoods or other city areas. These indices then allow for a comparison of neighbourhoods or population groups and may then reveal where interventions to improve wellbeing are most urgently required.

Regular surveys can see how certain interventions affect life satisfaction over time and gauge how city officials are responding to demands revealed from published survey results. Moreover, monitoring systems across neighbourhoods can generate a type of yardstick competition among officials to increase wellbeing within their neighbourhood or municipality. A further interesting aspect of the monitoring methodology proposed here is that it can be used to promote dialogue between public officials and the city public and enhance participation in decisionmaking. Frequently, the process of decision making and ensuring adequate consultation is as important as the final decision itself. A well-functioning monitoring system can be used to request opinions on particular issues faced by communities and to enhance participation in critical decisions.

The methodology proposed here may also allow officials to assess how investments to improve city wellbeing may be appropriately financed. Investments to improve characteristics that are fully valued through house prices (and are not found to be significant in life satisfaction regressions) may be recouped through property taxes of those houses on which prices will rise as a result. Other improvements to city wellbeing that are not revealed through enhanced house prices would in general have to be financed through more general taxation.

For local authorities and for citizens, an attractive trait of the proposed system of monitoring is that it can be employed on a regular basis to gauge the progress of the city and its neighbourhoods. Over time, this monitoring system makes clear whether enhancements in aspects of the city are important to people. It also helps to reveal which efforts by builders, on the one hand, and by local authorities, on the other, are concentrated more in some neighbourhoods than in others or among certain socioeconomic groups. If subjective information is collected on people's satisfaction with specific aspects of their cities, it will be possible to assess people's perceptions of the severity of problems in accordance with objective indicators, and whether the gaps between perceptions and reality differ in different zones of the city, especially between high-income and low-income areas.

Of course, there are other questions that cannot be answered by this monitoring system. In particular, the method does not permit comparison of the quality of life of different cities nor, consequently, can it provide city rankings. The reason is quite simple: if residents of London value the excitement and diversity of their city, while residents of Oslo consider order and homogeneity essential, there is no point in including both variables in the same index for purposes of comparison. A more abstract concept that encompasses both qualities could have perhaps been found, but that would not have greatly facilitated decisions on what should be done to improve either city. Although the proposed method does not permit cross-city comparisons, it does permit the comparison of problems within a city and thus a ranking of their importance from the perspectives of the market and from the perceptions of individuals and social groups. It also permits a valuation of public goods according to both criteria, which is essential for making informed decisions on public spending.

The precision with which these questions can be answered depends, of course, on the quality and the level of detail of the objective and subjective data obtained. In the monitoring systems that already exist in some cities, most of the necessary information is available. Paradoxically, though, some cities do not gather information on the two key variables: sales (or rental) prices of housing, and satisfaction with life (or at least with the city).

Nonetheless, the principal information-gathering effort involved in establishing a sound quality of life monitoring system, such as the one proposed here, should take place during its preparatory phase rather than its regular functioning. The power of a monitoring system resides not in attempting to cover every type of topic, but in covering key issues on the basis of a careful exploration of the determinants of housing prices and of individuals' satisfaction with life, or with the city.

A book that is slated for publication from the IDB,¹⁸ in which the application of this methodology is presented in greater detail, discusses additional aspects of how this type of inquiry should be carried out, and how a system to monitor the quality of urban life—one that is easy to operate at a reasonable cost on the basis of solid conceptual foundations—can be carried out in practice. This is the ideal of many scholars and observers of urban issues, and its application in reality may not be too far off in the future. A good monitoring system should enable local governments, analysts of urban problems, and local communities to engage in informed debate over the problems of cities and their possible solutions.

References

Acosta, O., J. A. Guerra, and D. Rivera (2005). 'Acceso de los Hogares a los Principales Servicios Públicos y Sociales y Percepciones de Calidad sobre estos Servicios'. Serie Documentos de Trabajo 76. Bogotá, Colombia: Colegio Mayor de Nuestra Señora del Rosario.

¹⁸ Lora et al. (2010).

- Alesina, A., R. Di Tella, and R. MacCulloch (2001). 'Inequality and Happiness: Are Europeans and Americans Different?'. *NBER Working Papers*, No. 8198.
- Amorin, É., and M. Blanco (2003). 'O Indice do Desenvolvimento Humano (IDH) na Cidade do Rio de Janeiro'. Rio de Janeiro: Coleçao Estudos Da Cidade. Prefeitura Da Cidade do Rio de Janeiro.
- Bayer, P., R. McMillan, and F. Ferreira (2003). 'A Unified Framework for Measuring Preferences for Schools and Neighbourhoods'. *Economic Growth Center Discussion Papers*, No. 872. New Haven: Yale University.
- Black, S.E. (1999). 'Do Better Schools Matter? Parental Valuation of Elementary Education'. *Quarterly Journal of Economics*, 114(2), 577-99.
- Blomquist, G., M. Berger, and J. Hoehn (1988). 'New Estimates of Quality of Life in Urban Areas'. *American Economic Review*, 78(1): 89-107.
- *Bogotá Cómo Vamo* (2009). Bogotá Cómo Vamos. Available at: www.bogotacomovamos.org/scripts/home.php.
- Cattaneo, M., S. Galiani, P. Gertler, S. Martínez, and R. Titiunik (2007). 'Housing, Health, and Happiness'. *WB Policy Research Working Papers*, No. 4214. Washington, DC: World Bank.
- Cavallieri, F., and G. Lopes (2008). *Índice de Desenvolvimento Social*. Washington, DC: Inter-American Development Bank.
- Chay, K. Y., and M. Greenstone (2005). 'Does Air Quality Matter? Evidence from the Housing Market'. *Journal of Political Economy*, 113(2): 376-424.
- Clapp, J., and S. Ross (2002). 'Schools and Housing Markets: An Examination of School Segregation and Performance in Connecticut'. *Economic Working Papers*, 200208.
- Clark, A.E. and A.J. Oswald (1994). 'Unhappiness and Unemployment'. *Economic Journal*, 104: 648-59.
- Comparando las Realidades Microurbanas da Cidade do Rio de Janeiro. Coleçao Estudios Cariocas No. 20080401.
- Cortés, D., L.F. Gamboa, and J. I. González (1999). 'ICV: Hacia una Medida Estándar de Vida'. *Coyuntura Social*, 159-80.
- Cruces, G., A. Ham, and M. Tetaz (2008). 'Quality of Life in Buenos Aires Neighbourhoods: Hedonic Price Regressions and the Life Satisfaction Approach'. Washington, DC: Latin American and Caribbean Research Network, Inter-American Development Bank and Center for the Study of Distribution, Labor and Social Affairs (CEDLAS). Unpublished document.
- Di Tella, R., R.J. MacCulloch, and A.J. Oswald (2001). 'Preferences over Inflation and Unemployment: Evidence from Surveys of Happiness'. *The American Economic Review*, 91(1): 335-41.
- Di Tella, R., and R. MacCulloch (1998). 'Partisan Social Happiness'. Cambridge, MA. Mimeo.

- Fahy, F. (2009). Environmental Protection Agency Publications and Reports. Washington, DC: Environmental Protection Agency. Available at: www.epa.ie/downloads/pubs/research/econ/galway21_fahy_guide.pdf.
- Feldman, B. (2008). 'The Urban Audit—Measuring the Quality of Life in European Cities'. Eurostat, Statistics in Focus. Available at: www.epp.eurostat.ec.europa.eu/ cache/ITY_OFFPUB/KS-SF-08-082/EN/KS-SF-08-082-EN.PDF
- Ferrer-i-Carbonell, A., and B.M. van Praag (2004). *Happiness Quantified: A Satisfaction Calculus Approach*. Oxford: Oxford University Press.
- *Foreign Policy* (2008). 'The 2008 Global City Index'. Available at: www.foreignpolicy.com/story/cms.php?story_id=4509
- Frey, B., and A. Stutzer (2002). *Happiness and Economics: How the Economy and Institutions Affect Human Wellbeing*. Princeton: Princeton University Press.
- Frey, B., S. Luechinger, and A. Stutzer (2004). 'Valuing Public Goods: The Life Satisfaction Approach'. *CESifo Working Papers*, No. 1158. Munich: CESifo.
- Gardner, J., and A.J. Oswald (2001). 'Does Money Buy Happiness? A Longitudinal Study Using Data on Wind Falls'. Coventry: University of Warwick. Unpublished manuscript.
- Gyourko, J., P. Linneman, and S. Wachter (1999). 'Analysing the Relationships among Race, Wealth and Home Ownership in America'. *Journal of Housing Economics*, 8 (2): 63-89.
- Hall, L. J., R. Madrigal, and J. Robalino (2008). 'Quality of Life in Urban Neighbourhoods in Costa Rica'. Washington, DC: Latin American and Caribbean Research Network, Inter-American Development Bank and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Unpublished document.
- IDB (2007). 'Latin American Research Network Project on Quality of Life in Urban Neighbourhoods in Latin America and the Caribbean'. Available at: www.iadb.org/res/projects_detail.cfm?id=91.
- IDB (Inter-American Development Bank) (2008). *Beyond Facts: Understanding Quality of Life. Development in the Americas.* Washington, DC: IDB and David Rockefeller Center for Latin American Studies.
- Kain, J. F., and J. M. Quigley (1975). Housing Markets and Racial Discrimination: A Microeconomic Analysis. Cambridge, MA: National Bureau of Economic Research.
- Li, M., and J. Brown (1980). 'Micro-Neighbourhood Externalities and Hedonic Prices'. *Land Economics*, 56(2): 125-41.
- Lora, E., A. Powell, P. Sanguinetti, and B. van Praag (2010). The Quality of Life in Latin American Cities: Markets and Perception. Washington, DC: Inter-American Development Bank and World Bank.
- Mercer (2009). Mercer's 2009 Quality of Living Survey Highlights Global. Available at: www.mercer.com/qualityoflivingpr.
- Moulton, B. (1986). 'Random Groups Effect and the Precision of Regression Estimates'. *Journal of Econometrics*, 32(3): 385-97.

- Quality of Life Project (2007). 'The Quality of Life Project'. Available at: www.bigcities.govt.nz/pdfs/2007/Quality_of_Life_2007.pdf
- Rider, R. (1967). *Economic Costs of Air Pollution, Studies in Measurement*. New York: Frederick A. Praeger.
- Ridker, R., and J. Henning (1967). 'The Determinants of Residential Property Values with Special Reference to Air Pollution'. *Review of Economics and Statistics*, 49(2): 246-57.
- Roback, J. (1982). Roback, J. (1982). 'Wages, Rents, and the Quality of Life'. *The Journal of Political Economy*, 90(6): 1257-78.
- Santons, L. D., and I. Martins (2007). 'Monitoring the Urban Quality of Life: The Porto Experience'. *Social Indicator Research*, 80: 411-25.
- van Praag, B. M., and B. Baarsma, B. (2005). 'Using Happiness Surveys to Value Intangibles: The Case of Airport Noise'. *Economic Journal*, 115(500): 224-46.
- van Praag, B.M.S., P. Frijters, and A. Ferrer-i-Carbonell (2003). 'The Anatomy of Subjective Well-Being'. *Journal of Economic Behavior & Organization*, 51(1): 29-49.
- Winkelman, L., and R. Winkelman (1998). 'Why Are the Unemployed so Unhappy'. *Economica*, 65(257): 1-15.
- Wolfers, J. (2002). 'Is Business Cycle Volatility Costly? Evidence from Surveys of Subjective Well Being'. Stanford Graduate School of Business Research Papers, No. 1751, Stanford University.